

Magnetic performance and future upgrades of the new ALBA magnetic Hall probe measurements bench for closed structures

J. Campmany, J. Marcos,

L. Ribó, V. Massana, L. Garcia

Outline

- 1. Challenge to face out
- 2. The concept and the design of new bench
- 3. Fabrication
- 4. Mechanical performance
- 5. Magnetic performance
- 6. Lessons learned
- 7. Future upgrades

The challenge

- MORE SMALL SPACES TO EVALUATE
- MORE ACCURATE AND 3D
- MORE UNACCESSIBLE
- MORE ENVIRONMENTAL CONDITIONS
- Measurement of closed structures: gaps ~4 to 25 mm
- High accuracy in positioning (~µm) and magnetic field (below 100 ppm)
- 3D field mapping, strokes of few cm in transversal, few m in longitudinal
- Measurements in vacuum (medium vacuum, ~10⁻¹ Pa)
- Measurements in cold (down to ~10 K)

The concept and design

Goals:

- a) Decouple magnetic structure to be measured, from movement. In this way, positioning accuracies rely on external structures, that can be as big as needed.
- b) Design a repetitive methodology to be sure that the Hall probe position (spatial and angular) is well known within required accuracy
- c) Develop and test a 3D Hall probe able to be introduced in narrow gaps
- Allow 3D fieldmapping. This is needed to introduce magnetic measurements in tracking codes.

DESIGN REQUIREMENTS

Ranges X : ±125 mm Y : ±50 mm Z : 1200 mm Chamber allowance ("stay clear" area) = 600 mm

MAGNETIC REQUIREMENTS

Maximum error

Field accuracy : $\pm 10^{-4}$ T

Position repetitivity: ±25 µm

Angular error: ±10⁻⁴ rad

Longitudinal speed ~15 mm/s

MECHANICAL REQUIREMENTS

> Repeatability _____ **X, Y, Z ≤ 0,03 mm**

Longitudinal POSITIONING ERROR dX, dY, dZ < 0,05 mm</p>

Angular POSITIONING ERROR Roll dα, Pitch dβ < 0,05 mrad Yaw dφ < 0,1 mrad

Bench overview

Critical points

- Positioning errors (angular and spatial)
- Vibrations (eigen-values of string structure)
- Repetitivity of the assembly (attach and dettach)

600

Arc structure

Strip dimensioning

- Area 16x1,6mm²
- Vibrating length 2600 mm
- $d = 1600 \text{ Kg/m}^3$
- Tensioning force 0.5 TN

Stages

Points to remark

- a) Belt is made on carbon-fiber and stretched to 500 kg
- b) Motion driven by step-motors.
- c) Motion controller is ESRF's ICEPAP
- d) X and Z motors are linked at low-level (electronically) and moved as one (special ICEPAP feature)
- e) Granite basis is dimensioned to guarantee that irregularities on lineal guides does not induce angular errors in the belt higher than specified (±25 µrad)
- f) Motion controller allows both point-to-point and on-the-fly scans. Maximum velocity 13 mm/s
- g) Motion controller triggers data acquisition

		ii.
Magnitudes on top of Hall probe	Values	
X stroke	0.233 m	
Y stroke	0.092 m	

Z stroke	1.282 m
On-the-fly velocity	13⋅10 ⁻³ m/s

Mechanical performance

Positioning

X positioning (horizontal)

Maximum error: ±4 µm

Y positioning (longitudinal)

Maximum error: ±5 µm

Maximum error: ±3 µm

Z positioning (vertical)

Mechanical performance Angle

z-motion guidance error - yaw

Maximum error: ±12 µm ±15 µrad

y-motion guidance error - pitch

Maximum error: ±10 µm ±15 µrad

Mechanical performance

Straighness & roll angle

Maximum error: ±12

Maximum error: ±12 µm

Roll angle error: ±3.5 µrad

Specifications

Magnitudes on top of Hall probe	Values
X stroke	0.2 m
Y stroke	0.1 m
Z stroke	1.2 m
X positioning tolerance	±25·10 ⁻⁶ m
Y positioning tolerance	±25·10 ⁻⁶ m
Z positioning tolerance	±10·10 ⁻⁶ m
Z positioning resolution	10-10 ⁻⁶ m
Pitch angle tolerance	±50·10 ⁻⁶ rad
Yaw angle tolerance	±100·10 ⁻⁶ rad
Roll angle tolerance	±50·10 ⁻⁶ rad
Eigenfrequency (Z direction)	> 50 Hz
On-the-fly velocity	~15·10 ⁻³ m/s

Performances

Magnitudes on top of Hall probe	Values
X stroke	0.233 m
Y stroke	0.092 m
Z stroke	1 282 m
X positioning error (wrt encoder)	7⋅10 ⁻⁶ m
Y positioning error (wrt encoder)	5.41·10⁻ ⁶ m
Z positioning error (wrt encoder)	10∙10 ⁻⁶ m
Z positioning resolution	10∙10 ⁻⁶ m
Pitch angle error	25.10 ⁻⁶ rad
Yaw angle error	20.10 ⁻⁶ rad
Roll angle error	3.5.10 ⁻⁶ rad
Straightness error	7.8∙10 ⁻⁶ m
Flatness error	6.7∙10 ⁻⁶ m
Eigenfrequency in Z direction	90 Hz
Amplitudes in Z direction	10∙10 ⁻⁹ m
Eigenfrequency in Y direction	43.5 Hz
Amplitudes in Y direction	150∙10 ⁻⁹ m
Eigenfrequency for torsion (roll)	23.6 Hz
Amplitudes of torsion	3.10 ⁻⁶ rad
On-the-fly velocity	13-10 ⁻³ m/s

Uncertainty summary

Parameter	Spec	Measured	Remark
Z-position	50 µm	10 µm	On-the-fly encoder following error at 2Hz
X-position	50 µm	7 µm	Limited by Guidance error
Y-position	50 µm	5.41 μm	Limited by Guidance error
Roll	50 µrad	3.5 μrad	Guidance error /deformations
Pitch	50 µrad	25 μrad	Guidance error /deformations
Yaw	100 µrad	20 µrad	Guidance error /deformations

Vibrations: Resonances

Impulse response function provides a peaks at the resonance frequencies

Measured at a string tension of 5000 N

Measured with the 10 g target of the IF to minimize influence of its weight

Vibrations: Amplitudes

- Amplitude depends on the excitation.
- Measured at a tension of 5000 N
- Measured with the 10g target of the IF to minimize influence of its weight

Maximum error: ±0.25 µm ±3 µrad

Alignment procedure

- 1. Carbon fiber is dettached
- 2. Carbon fiber is passed through magnetic structure
- 3. Carbon fiber is reattached and stretched
- 4. Horizontal reference magnet is placed on Hall probe position and aligned with high precision water level
- Orientation of Carbon fiber (angles) is set to horizontal using the magnet as reference. Maximization of vertical Hall probe is used as reference.
- 6. Reference magnet is opened and taken out
- 7. Cones are placed on Hall probe position
- 8. Zero field point in cones is found scanning with bench
- 9. Translation vector between cones and magnetic structure is measured.

Overall mechanical error: Positioning: ± 30 µm Angle: ± 25 µrad Horizontal magnet accuracy: ±0.75 µrad

Data acquisition

- Design of new 3D Hall probe thin holder
 - 2 mm height, 10 mm wide, 14 mm long
- Temperature reading with 0.01° accuracy

Control system

• Acquisition system triggered by ICEPAP in real time

Data acquisition

MAGNETIC PERFORMANCE

Homogeneous fields: experimental setup

Magnetic field $B_x \sim 0.0130 \text{ T}$

Repetitivity: 6.7.10⁻⁶ T

Relative accuracy: ~5.10⁻⁴

Magnetic field $B_y \sim 0.49 \text{ T}$ Repetitivity: 4.2-10⁻⁵ T

Relative accuracy: ~8.10⁻⁵

Magnetic field $B_z \sim 0.039 T$ Repetitivity: 6.9-10⁻⁶ T

Relative accuracy: ~1.7.10⁻⁴

MAGNETIC PERFORMANCE

Variable fields: experimental setup

Magnetic field $B_{0x} \sim 0.012 \text{ T}$

Repetitivity: 5.9-10⁻⁶ T

Relative accuracy: ~4.9.10⁻⁴

Magnetic field $B_{0y} \sim 0.45 \text{ T}$ Repetitivity: 5.1.10⁻⁵ T

Relative accuracy: ~1.1.10⁻⁴

Magnetic field $B_{0z} \sim 0.4 \text{ T}$ Repetitivity: 4.5-10⁻⁵ T

Relative accuracy: ~1.1.10⁻⁴

0.5 Averaged B₂ 0.4 0.3 Magnetic field (T) 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.4 -0.5 255 355 455 555 655 755 Longitudinal position (mm)

Period determination using zero-crossing

Statistic error: < 1 µm

www.cells.es 31/41

1st real case

Currently, the bench is at CIEMAT in Madrid to characterize the main SC magnet of a compact cyclotron

Deviations from theoretical model are smaller than 1 mT for the whole volume, and most of the points in the interest area deviate much less than 0.5 mT

- SUMMARY Magnetic measurements rer convities in the range 100 ppm • ou Petitil For low intensity finds ۲ For high intensity fields, repetitivity Period Jetermination accur
- Vibratic are problem (submicros)
- Attacheme. t and dettachement are repetitive (accuracy ±30 μm / ±25 $\mu rad)$
- No major problems with acquisition (cable length, temperature, noise)

NEXT STEP: UPGRADES

• in-vacuum (~10⁻² Pa) 10⁻⁴

mbar

in-cold (~10 K)

ANKA-KIT Babcock-Noël SCU15

BENCH UPGRADES

Vacuum and thermal isolation will be assured through long bellows

BENCH UPGRADES

Measurement procedure:

- Assemble and align the device with respect to the bench
- 2) Measure 1.3 m (half the array + 0.2 m external + 0.1 m internal)
- Dissassemble the device, turn it 180° and realing it with respect to the bench
- 4) Measure 1.3 (the other half + 0.2 m external + 0.1 internal)
- 5) Data treatment: merge both measurements. Merging zone 0.1 m

BENCH UPGRADES TASKS TO DO

Enlarge the "C" frame

BENCH UPGRADES VACUUM SPECIFIC ITEMS

Bellow (expanded)

BENCH UPGRADES

BENCH UPGRADES

BENCH UPGRADES OPEN ISSUES & TASKS TO DO

- 1. Define theoretical model of the new string (adjust linear density and tension to have the first frequency mode at a safe range)
- Check the carbon fiber behavior at ~10° K / if needed, look for an alternative
- 3. Calibrate Hall probes at ~10° K / if needed, look for an alternative
- 4. Structural design of the new wide C structure for a stable performance
- 5. Validation of alignment procedure
- 6. Detail and production of the new vacuum components and new arc structure

Thanks for your attention