Vitaliy Mykhaylyk

profilephoto

Vitaliy Mykhaylyk was appointed as a Beamline Scientist on beamline I23 in 2010. Prior to this he was in charge of the  development of cryogenic techniques and instrumentation for detection of ionizing radiation at the University of Oxford. He is now developing the procedure of sample handling in a vacuum environment, as well as protein tomography for I23.

Email: vitaliy.mykhaylyk@diamond.ac.uk
Tel: +44 (0) 1235 778801

Key Research Area

  • Protein Crystallography
  • Non-contact Thermometry
  • Beamline Development

V. B. Mykhaylyk,  H. Kraus and M. Saliba Bright and fast scintillation of organolead perovskite MAPbBr3 at low temperature, Materials Horizons, 6 (2019) 1740-1747.

V. B. Mykhaylyk, H. Kraus, L. Bobb, R. Gamernyk and K. Koronski Megahertz non-contact luminescence decay time cryothermometry by means of ultrafast PbI2 scintillator, Scientific Reports 9 (2019) 5274.

N. Ahmed, H. Kraus, H. J. Kim, V. Mokina, V. Tsiumra, A. Wagner, Y. Zhydachevskyy, V. B. Mykhaylyk Characterisation of tungstate and molybdate crystals ABO4 (A = Ca, Sr, Zn, Cd; B = W, Mo) for luminescence lifetime cryothermometry, Materialia 4 (2018) 287–296.

Current Research Interests

 

Sample cooling in vacuum environment

 

 A number of technical challenges needed to be solved for the MX experiment in vacuum to become a viable tool for structural biology. One such challenge is the necessity to provide efficient cooling of protein samples below 100 K. In a vacuum environment, cooling is controlled by thermal conductivity only. As a protein sample should be mounted on the goniometer in a holder, there will be several dissimilar materials and interfaces (i.e. metal - ice - protein) involved in heat transfer. The interfaces create breaks in the continuity of the cooling, resulting in a temperature jump across the joint. This is due to the thermal contact conductance (TCC), which in many cases is a primary factor limiting cooling efficiency. Therefore, the studies into the thermal conductivity through a system comprising several materials and interfaces constitute an integral part of the development of the procedure for handling the protein crystal in a vacuum environment.

             Systematic investigations of the TCC of uncoated and Au-plated Cu-Cu joints allowed to suggest a model that consistently explains the observed temperature dependencies [1]. The results were then used to design a demountable sample holder assembly with a magnetic joint that ensures good thermal conductivity. Extensive tests have shown that this type of demountable joint provides adequate and reliable solution for applications that require swift and frequent exchange of sample holders in vacuum, while preserving a high thermal contact conductivity, consistently over extended periods of operation.

 

 

Non-contact thermometry for application at synchrotron sources

 

Temperature is an important parameter affecting the state of any system in nature. For many areas of science and technology, temperature monitoring is vital, especially in cases where it has a strong impact on the material properties, specifically those influencing the system’s functionality, reliability and lifespan. It must be therefore accurately monitored during experiments aiming to characterise the system, especially when the property to be characterized exhibits a temperature dependence. As an example, temperature is a very important parameter when aiming to protect biological samples from radiation damage during experiments that utilise powerful ionising radiation produced by modern synchrotron light sources. There are numerous evidences that intense irradiation applied to samples of microscopic size can significantly increase their temperature, which in turn causes sample degradation. This effect is likely to have even higher impact owing to the even higher brilliance that will result from planned upgrades of synchrotrons.

A novel method for remote, non-contact, in situ monitoring of protein crystal temperatures has been developed for the I23 beamline at the Diamond Light Source (DLS) dedicated to macromolecular crystallography with soft X-rays. The beamline operates in a vacuum in which properties of microscopic (ca. 0.01 mm3) samples of protein crystals, cooled to temperatures below 100 K, are measured. The temperature is derived from changes in the luminescence decay characteristics of a Bi4Ge3O12 scintillation sensor [1]. The schematics of the measurement technique is displayed in Fig. 1

 

Fig. 1 Schematics of the luminescence lifetime thermometry system: M1-M3 mirrors, L1 – objective lens UV LED – ultraviolet light emitting diode, W – optical window, PMT – photomultiplier tube, CCD – camera, DAQ – data acquisition, PC – personal computer, WG - waveform generator.

 

The method was extensively tested and the results obtained demonstrated the feasibility and usefulness of the approach as well as the reliability and level of accuracy of the method. In the temperature range of beamline operation (30 – 150 K) the error of temperature determination using a BGO scintillator is ±1.6 K. The principal advantage of the non-contact thermometry system is the elimination of any electrical connection between the sensor and the readout systems. This feature makes it fully compatible with the vacuum environment of the beamline, and a necessity of swift replacement and manipulation (transfer, mounting, rotation) capability of the samples. Furthermore, non-contact measurements allow easy minimization of systematic errors due to unavoidable heat transfer in wired sensors. The application of this technique at I23 underpins the optimisation of the sample cooling and transfer processes that was previously done through the laborious and time-consuming trial-and-error repeats.

                Furthering these researches an elegant concept of megahertz thermometry that uses the time structure of synchrotron radiation has been tested recently [3]. It is demonstrated that temperature can be derived by measuring decay time profile of ultrafast scintillations excited by synchrotron X-ray pulses in narrowband semiconductors. The initial experiments have proved the principal feasibility of the temperature measurements based on this approach and the studies commenced to facilitate reliable temperature monitoring using this method.

 

 

1. V. B. Mykhaylyk et al. Thermal contact conductance of demountable in vacuum copper-copper joint between 14 and 100 K Rev. Sci. Instr. 83 (2012) 034902.

2. V. B. Mykhaylyk et al. Non-contact luminescence lifetime cryothermometry for macromolecular crystallography, Journal of Synchrotron Radiation 24 (2017) 636-645.

3. V. B. Mykhaylyk et al. Megahertz non-contact luminescence decay time cryothermometry by means of ultrafast PbI2 scintillator, Scientific Reports 9 (2019) 5274.

Collaborations

Joint project  with Prof. Hans Kraus (University of Oxford, UK): “Application of a particle detection technique for in situ temperature monitoring in synchrotron beamline end stations” (STFC, miniPIPS, 2012-2016).

Collaboration with Dr. Y. Zhydachevskyy (Institute of Physics, Polish Academy of Science, Poland) "Non-contact thermometry using oxide crystals".

Collaboration with Prof. V. Kapustyanyk  (Centre of Low  Temperature Studies, Lviv National University, Ukraine) "Studies of scintillation properties of materials at low temperatures"

Collaboration with Prof. M. Saliba (Technical University of Darmstadt, Germany) "Cryogenic perovskite scintillators"

Publications

scholar.google.com/citations

Articles in journals (since 2010)

1.  A. Rozov, I. Khusainov, K. El Omari, R. Duman, V. Mykhaylyk, M. Yusupov, E. Westhof, A. Wagner and G. Yusupova. Importance of potassium ions for ribosome structure and function revealed by long-wavelength X-ray diffraction. Nature communications 10 (2019), 1-12.

2.    V. B. Mykhaylyk, H Kraus, V Kapustianyk, M Rudko, Low temperature scintillation properties of Ga2O3, Applied Physics Letters 115 (2019) 081103.

3.   V. B. Mykhaylyk,  H. Kraus and M. Saliba. Bright and fast scintillation of organolead perovskite MAPbBr3 at low temperature, Materials Horizons, 6 (2019) 1740-1747.

4.    V. B. Mykhaylyk, H. Kraus, L. Bobb, R. Gamernyk and K. Koronski Megahertz non-contact luminescence decay time cryothermometry by means of ultrafast PbI2 scintillator, Scientific Reports 9 (2019) 5274.

5.      N. Ahmed, H. Kraus, H. J. Kim, V. Mokina, V. Tsiumra, A. Wagner, Y. Zhydachevskyy, V. B. Mykhaylyk Characterisation of tungstate and molybdate crystals ABO4 (A = Ca, Sr, Zn, Cd; B = W, Mo) for luminescence lifetime cryothermometry, Materialia 4 (2018) 287–296.

6.      V. B. Mykhaylyk, A. Wagner and H. Kraus,  Non-contact luminescence lifetime microthermometry using scintillation sensors, Acta Physica Polonia A 133 (2018) 1108-1111.

7.    H. P. Austin, M. D. Allen, B. S. Donoho, N.A. Rorrer, F. L. Kearns, R. L. Silveir, B. C. Pollard, G. Dominick, R. Duman, K. El Omari, V. Mykhaylyk, A. Wagner, W. E. Michener, A Amore, M. S. Skaf, M. F. Crowley, A. W. Thorne, C.W. Johnson, H. L. Woodcock, J. E. McGeehan, and G. T. Beckhamc, Characterization and engineering of a plastic-degrading aromatic polyesterase,  Proceedings of National. Academy of Science USA 115 (2018) E4350-E4357.

8.      V. B. Mikhailik, S. Galkin, H. Kraus, V. Mokina, A. Hrytsak, V. Kapustianyk, M. Panasiuk, M. Rudko, V. Rudyk, ZnTe cryogenic scintillator, Journal of Lumminescence, 188 (2017) 600-603.

9.    V. B. Mykhaylyk,  A. wagner and H. Kraus, Non-contact luminescence lifetime cryothermometry for macromolecular crystallography, Journal of Synchrotron Radiation 24 (2017) 636-645.

10.              O. Aurelius, R. Duman, K. El Omari, V. Mykhaylyk and A. Wagner Long-wavelength macromolecular crystallography first successful native SAD experiment close to the sulfur edge, Nucl. Instr. Meth. Phys. Res. B 792 (2017) 12-16.

11.              A. F. Bent, G. Mann, W. E. Houssen, V. Mykhaylyk. R. Duman, L. Thomas, M. Jaspars, A. Wagner, J.H. Naithmith,  Structure of the cyanobactin oxidase ThcOx from Cyanothece sp PCC 7425, the first structure to be solved at Diamond Light Source beamline I23 by means of S-SAD, Acta Crystallographyca D 72 (2016) 1174-1180.

12.              A. Wagner, R. Duman, K. Henderson and V. Mykhaylyk, In-vacuum long-wavelength macromolecular crystallography, Acta Crystallographyca D 72 (2016) 430-439.

13.  X. Zhang, J. Lin, V. B. Mikhailik and H. Kraus, Cryogenic phonon–scintillation detectors with PMT readout for rare event search experiments, Astropart. Phys. 79 (2016) 31–40.

14.  D. M. Chernyak, F. A. Danevich, V. Ya. Degoda, A. Giuliani, I. M. Ivanov, Ya. P. Kogut, H. Kraus,  B. N. Kropivyansky, E. P. Makarov, M. Mancuso, P. de Marcillac, V. B. Mikhailik, V. M. Mokina, I. M. Moroz, S. G. Nasonov, O. Plantevin, D. V. Poda, V. N. Shlegel, M. Tenconi, V. I. Tretyak, M. Velazquez and V. N. Zhdankov, Effect of tungsten doping on ZnMoO4 scintillating bolometer performance Optical Materials, 49 (2015) 67–74.

15.  X. Zhang, J. Lin, V. B. Mikhailik and H. Kraus Studies of scintillation properties of CaMoO4 at millikelvin temperatures Applied Physics Letters 106 (2015) 241904.

16.  V. B. Mikhailik, Yu. Elyashevskyi, H. Kraus, H. S. Kim, V. Kapustianyk and M. Panasyuk, Temperature dependence of scintillation properties of SrMoO4. Nucl. Instr. Meth. Phys. Res. A 792 (2015) 1-5.

17.  V. B. Mikhailik, V. Kapustyanyk, V. Tsybulskyi, V. Rudyk, and H. Kraus Luminescence and scintillation properties of CsI: A potential cryogenic scintillator Phys. Status Solidi B 252, (2015) 804810.

18.  V. M. Mokina, F.A. Danevich, V.V. Kobychev, R.V. Kobychev, H. Kraus, V. Mikhailik and I.M. Solsky, Optimization of light collection from crystal scintillators for cryogenic rare decay experiments, Solid State Phenomena 230 (2015) 199-204.

 

19.  F.A. Danevich, R. V. Kobychev, V. V. Kobychev, H. Kraus, V. B. Mikhailik, and V. M. Mokina Optimization of light collection from crystals scintillators for cryogenic experiments,  Nucl. Instr. Meth. Phys. Res. A 744 (2014) 41-47.

20.  F.A. Danevich, R. V. Kobychev, V. V. Kobychev, H. Kraus, V. B. Mikhailik, V. M. Mokina and I.M. Solsky Impact of geometry on light collection efficiency of scintillation detectors for cryogenic rare event searches, Nucl. Instr. Meth. Phys. Res. B 336 (2014) 26-30.

2013

21.  J. Warren, W. Armour, D. Axford, M. Basham, T. Connolley, D. R. Hall, S. Horrell, K. E. McAuley, V. Mykhaylyk, A. Wagner and G. Evans, Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging, Acta Cryst. D 69 (2013) 1252-1259.

22.  V. Alenkov, O.A. Buzanov, N. Khanbekov, V.N. Kornoukhov, H. Kraus, V.B. Mikhailik and V.A. Shuvaeva Application of the Monte-Carlo refractive index matching (MCRIM) technique to the determination of the absolute light yield of a calcium molybdate scintillator, Journal of Instrumentations 8 (2013) P0600.

23.  V. Mykhaylyk and A.Wagner Towards long wavelength protein crystallography: keeping protein crystal frozen in vacuum, Journal of Physics: Conference Series   425 (2013) 012010.

24.    V. B. Mikhailik and H.Kraus, Development of techniques for characterisation of scintillation materials for cryogenic application, Radiation Measurements, 49 (2013) 7-12.

25.  V. B. Mikhailik, S. Henry, M. Horn, H. Kraus, A. Lynch, M. Pipe, Investigation of luminescence and scintillation properties of a ZnS-Ag/6LiF scintillator in the 7-295K temperature range, J. Luminescence 134 (2013) 63-66.

26.  V. B. Mikhailik and V. S. Tsybulskyy. Studies of concentration dependancies in the luminescence of titanium dopped Al2O3 using synchrotron radiation Journal of Physical Studies, 17  (2013) 2201-2208 (in Ukrainian).

27.    V. B. Mykhaylyk, M. Burt, C. Ursachi and A. Wagner, Thermal contact conductance of demountable in vacuum copper-copper joint between 14 and 100 K Rev. Sci. Instr. 83 (2012) 034902.

28.    J. Marchal, B. Luethi , C. Ursachi, V. Mykhaylyk and A. Wagner Low-energy X-ray detection with an in-vacuum PILATUS detector. Journal of Instrumentation 6 (2011) C11033.

29.    V.V. Alenkov, O.A. Buzanov, N. Khanbekov, S.K. Kim, H.J. Kim, V.N. Kornoukhov, H. Kraus, V.B. Mikhailik Growth and characterization of isotopically enriched 40Ca100MoO4 single crystals for rare event search experiments Cryst. Res. Thechn. 46, (2011) 1223-1228.

30.    V. B. Mikhailik, Application of Tb3+ for the enhancement of the luminescence intensity (sensitisation) of phosphors at excitation in the vacuum ultraviolet region, Journal of Physical Studies, 15 (2011) 3702-3708 (in Ukrainian).

31.    V. B. Mikhailik, P. C. F. Di Stefano, S. Henry, H. Kraus, A. Lynch, V. Tsybulskyi and M. A. Verdier, Studies of concentration dependences in the luminescence of Ti- doped Al2O3. J. Appl. Phys. 109 (2011) 053116.

32.    A. Senyshyn, M. Hoelzel, T. Hansen, L.Vasylechko, V. B. Mikhailik, H.Kraus and H. Ehrenberg, Thermal structural properties of calcium tungstate, J. Appl. Cryst. 44 (2011) 319–326.

33.    F. A. Danevich, I. K. Bailiff, V. V. Kobychev, H. Kraus, M. Laubenstein, P. Loaiza, V. B. Mikhailik, S .S. Nagorny, A. S. Nikolaiko, S. Nisi, I. M. Solsky, G. Warot, Effect of recrystallization on the radioactive contamination of CaWO4 crystal scintillators. Nucl. Instr. Meth. Phys. Res. A 631 (2011) 44-53.

34.    J. Jochum, G. Angloher, M. Bauer, I. Bavykina, A. Brown, C. Bucci, C. Ciemniak, G. Deuter, F. von Feilitzsch, D. Hauff, S. Henry, P. Huff, C. Isaila, M. Kiefer, M. Kimmerle, H. Kraus, Q. Kronseder, J.-C. Lanfranchi, V. B. Mikhailik, F. Petricca, S. Pfister, W. Potzel, F. Pr¨obst, S. Roth, K. Rottler, C. Sailer, K. Sch¨affner, J. Schmaler, S. Scholl, M. von Sivers, W. Seidel, L. Stodolsky, C. Strandhagen, R. Strauss, I. Usherov, The CRESST dark matter search. Progress in Particle and Nuclear Physics 66 (2011) 202-207.

35.    V. B. Mikahilik and H. Kraus, Scintillators for cryogenic application: state-of-art. Journal of Physical Studies 14 (2010) 4201-4206.

36.    V. B. Mikhailik, L. Vasylechko, H. Kraus, V. Kapustyanyk, M. Panasyuk, Yu. Prots, V. Tsybulskyi, Correlation between the peculiarities of structure and luminescence properties of MgWO4-MgMoO4 system. Journal of Physical Studies 14 (2010) 3201-3212 (in Ukrainian).

37.    F. A. Danevich, B. V. Grinyov,  S. Henry, M. B. Kosmyna, H. Kraus, N. Krutyak, V. M. Kudovbenko, V. B. Mikhailik, L.L. Nagornaya, B. P. Nazarenko, A. S. Nikolaiko, O. G. Polischuk, V. M. Puzikov, A. N. Shekhovtsov, V.I. Tretyak, Yu.Ya. Vostretsov, Feasibility study of PbWO4 and PbMoO4 crystal scintillators for cryogenic rare events experiments, Nucl. Instr. Meth. Phys. Res. A 622 (2010) 608-613.

38.    V. B. Mikhailik and H. Kraus, Feasibility studies of VUV sensitisation effect of Tb3+, Spectroscopy Lett. 43 (2010) 350-356.

39.    H. Kraus and V. B. Mikhailik, First test of a cryogenic scintillation module with a CaWO4 scintillator and a low-temperature photomultiplier down to 6 K, Nucl. Instr. Meth. Phys. Res. A 621 (2010) 395-400.

40.    V. B. Mikhailik and H. Kraus, Enhancement through sensitisation of VUV-excited luminescence in red-emitting pentaborate phosphors Phys. Stat. Sol. A 207 (2010) 2339-2343.

41.    V. B. Mikhailik and H. Kraus Performance of scintillation materials at cryogenic temperatures, Phys. Stat. Sol. B 247 (2010) 1583-1599.

42.     R.F. Lang, G. Angloher, M. Bauer, I. Bavykina, A. Bento, A. Brown, C. Bucci, C. Ciemniak, C. Coppi, G. Deuter, F. von Feilitzsch, D. Hauff, S. Henry, P. Huff, J. Imber, S. Ingleby, C. Isaila, J. Jochum, M. Kiefer, M. Kimmerle, H. Kraus, J.-C. Lanfranchi, B. Majorovits, M. Malek, R. McGowan, V. B. Mikhailik, E. Pantic, F. Petricca, S. Pfister, W. Potzel, F. Pröbst, S. Roth, K. Rottler, C. Sailer, K. Schäffner, S. Scholl, W. Seidel, L. Stodolsky, A.J.B. Tolhurst, I. Usherov and W. Westphal, Electron and gamma background in CRESST detectors, Astropart. Phys., 32 (2010) 318-324.

43.    R.F. Lang, G. Angloher, M. Bauer, I. Bavykina, A. Bento, A. Brown, C. Bucci, C. Ciemniak, C. Coppi, G. Deuter, F. von Feilitzsch, D. Hauff, S. Henry, P. Huff, J. Imber, S. Ingleby, C. Isaila, J. Jochum, M. Kiefer, M. Kimmerle, H. Kraus, J.-C. Lanfranchi, B. Majorovits, M. Malek, R. McGowan, V. B. Mikhailik, E. Pantic, F. Petricca, S. Pfister, W. Potzel, F. Pröbst, S. Roth, K. Rottler, C. Sailer, K. Schäffner, S. Scholl, W. Seidel, L. Stodolsky, A.J.B. Tolhurst, I. Usherov and W. Westphal, Discrimination of recoil background in scintillating calorimeters, Astropart. Phys. 33 (2010) 60-64.

44.    S. Roth, G. Angloher, M. Bauer, I. Bavykina, A. Bento, A. Brown, C. Bucci, C. Ciemniak, C. Coppi, G. Deuter, A. Erb, F.v. Feilitzsch, A. Gütlein, D. Hauff, S. Henry, M. Hofmann, P. Huff, J. Imber, S. Ingelby, C. Isaila, J. Jochum, M. Kiefer, M. Kimmerle, H. Kraus, T. Lachenmaier, J.-C. Lanfranchi, R.F. Lang, B. Majorovits, M. Malek, R. McGowan, V. Mikhailik, E. Pantic, F. Petricca, S. Pfister, W. Potzel, F. Pröbst, K. Rottler, C. Sailer, K. Schäffner, J. Schmaler, S. Scholl, W. Seidel, M.v. Sivers, L. Stodolsky, R. Strauss, A.J.B. Tolhurst, I. Usherov and W. Westphal Direct dark matter search with CRESST and EURECA Progress in Particle and Nuclear Physics, 64 (2010) 457-459.

A. M. Dubovik, Yu. Ya. Vostretsov, B. V. Grinyov, F. A. Danevich, H. Kraus L. L. Nagornaya, V. B. Mikhailik, I. A. Tupitsyna, Research and development of ZnBO3 (B=W, Mo) crystal scintillators for Dark Matter and Double Beta Decay searches, Acta Physics Polonica A 117 (2010)  15-19.

Diamond Light Source

Diamond Light Source is the UK's national synchrotron science facility, located at the Harwell Science and Innovation Campus in Oxfordshire.

Copyright © 2022 Diamond Light Source

 

Diamond Light Source Ltd
Diamond House
Harwell Science & Innovation Campus
Didcot
Oxfordshire
OX11 0DE

See on Google Maps

Diamond Light Source® and the Diamond logo are registered trademarks of Diamond Light Source Ltd

Registered in England and Wales at Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom. Company number: 4375679. VAT number: 287 461 957. Economic Operators Registration and Identification (EORI) number: GB287461957003.

feedback